一种高增益低噪声的图像探测器读出电路设计
来源:振荡器系列 发布时间:2024-12-15 00:40:28产品内容介绍
当前固体微光器件以EBCCD及EMCCD器件为主,随着CMOS工艺及电路设计技术的发展,微光CMOS图像传感器的性能在逐步的提升,通过采用专项技术,微光CMOS图像传感器的性能已接近EMCCD的性能,揭开了CMOS图像传感器在微光领域应用的序幕。随着对微光CMOS图像传感器研究的进一步深入,在不远的未来,微光CMOS图像传感器的性能将达到夜视应用要求,在微光器件领域占了重要地位。
读出电路是微光CMOS图像传感器的重要组成部分,它的基本功能是将探测器微弱的电流、电压或电阻变化转换成后续信号处理电路能处理的电信号,它的噪声水平限制着CMOS图像传感器在微光下的应用。微光条件下像素的输出信号十分微弱,任何过大的电路噪声、偏移都可以将信号湮没,因此提高读出电路输出信号的SNR是微光设计的关键之一。本文采用的新型电容反馈跨阻放大型读出电路CTIA电路,能够给大家提供很低的探测器输入阻抗和恒定的探测器偏置电压,在从很低到很高的背景范围内,都有很低的噪声,其输出信号的线性度和均匀性也很好,适合微弱信号的读出。?
为完成探测器输出电流向电压的精确转化,所设计的电路由CTIA和相关双采样(CDS)组成,CTIA由反向放大器和反馈积分电容构成的一种复位积分器。其增益大小由积分电容确定。图1为典型CTIA电路结构。
当Reset信号为高时,MOS开关开通,由运算放大器的虚短特性可知,输入端的电压与Vref相等,此时积分电容两端电压相等,都为Vref。当reset信号变为低电平时,MOS开关关断,由于输入端的电压由Vref控制,因此在积分电容Cf右极板上产生感应电荷并慢慢积累,右极板电压逐渐增大,积分过程开始。最后电压通过相关双采样电路读出。
为了更好的提高读出电路的增益,使电路能在比较短的积分时间内,读出PA级的电流,电路中的积分电容要非常小。同时为了提高信噪比,在减小积分电容的同时,电路噪声也要减小。在新型电路结构中,采用T型网络电容加nmos开关,电路结构如图2所示。
由于C1和C2的作用,使得Cf在CTIA反馈回路中的有效值减少,其有效值为:Cfb=(C2Cf)/(Cf+C1+C2),这样Cf可以取相对较大的值,避免了使用小电容,因为小电容在工艺上较难实现,且误差较大。在本电路中,Cf=20fF,C2=18fF,C1=150fF,则Cfb=2fF。
该电路可工作在高增益模式或低增益模式。在高增益模式,当reset为高电平时,gaIn导通,这时有效电容为Cf,当reset为低电平时,gaIn关断,此时的积分电容为Cf、C1和C2组成的T型网络电容,这样保证了电路在复位时大电容,可大大降低噪声,积分时小电容,可大幅度的提升增益。当gaIn一直为高电平时,电路工作在低增益模式。
相关双采样电路由两组电容和开关组成,电路工作过程如下。首先,开始积分,R导通,相关双采样电路先读出像素的复位信号,存储Vreset电压到电容Creset中。积分完成,开关S导通,将电压Vread储存到电容Csig中。最后,将存储在两个电容之上的电压值相减得到最终的像素输出电压值:
这种结构能很好的消除CMOS图像传感器中像素的复位噪声、1/f噪声以及像素内的固定模式噪声。
CMOS读出电路中包括光探测器、MOS管和电容3种元件。光探测器和MOS管是读出电路的主要噪声源,这些噪声包括:一方面光探测器和MOS管的固有噪声;另一方面由读出电路结构和工作方式引起的噪声。
复位噪声是由复位管引入的一种随机噪声。当像素进行复位时,复位管处于饱和区或亚阈值区,具体状态取决于光电二极管的电压值。复位管导通时可以等效为一个电阻,而电阻存在的热噪声将引入到复位信号形成复位噪声。其大小与二极管的电容有关,复位噪声电压为
光电流散粒噪声与照度有关,很难消除。与暗电流有关的散粒噪声能够最终靠改变掺杂浓度减小暗电流,但这会降低量子效率。在本电路中,In=100fA,Is=20pA,Tint=20s,Cint=2fF,则Vdarkn=0.28mV,Vsn=4mV。
闪烁噪声也称为1/f噪声。在半导体材料中,晶体缺陷和杂质的存在会产生陷阱,陷阱随机捕获或释放载流子形成闪烁噪声。在读出电路中,CTIA放大器是闪烁噪声的主要来源。
CTIA读出噪声与输入端电容Cin=Cpd、反馈电容Cfb,以及负载电容CL的设计均有关,其小信号噪声模型如图4所示。